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Section 1

The Method of Frieman and Kroll

The derivation of the method developed by Frieman and Kroll (1973) for the calcula-

tion of electromagnetic fields due to a transmitting antenna within a one-dimensional profile of

electrical conductivity starts with Maxwell's equations in the charge-rationalized MKS system of

units-

VxH =7+ ID (0.1)
0t

VxE=-a -- l(1.2)at

V7 -= p (1.3)

V.BO .0(1.4)

Assuming a time dependence of e"'O for the fields and currents, the first two equations become

VxE = -icoAn (1.5)

VxR - 7+ iWoE , (1.6)

where the linearity conditions

B=EE (1.7)

9 - 4T(1.8)

are assumed, with the electrical permittivity e and the magnetic permeability A taken to be

independent of the field variables and not explicitly dependent on time. The choice of e''" over

e-'w as the time dependent factor is motivated by the fact that this choice makes it possible to

directly compare the field values calculated by this method with the Fourier coefficients of field

value measurement real time series that have been Fourier analyzed according to the standard

convention. If one then expresses the current density distribution 7 in the form

7- +al ,(1.9)

.- 

. . .
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where 74 is the current uensity distribution in the transmitting antenna and the other term on

the right is the current density distribution induced by ohmic processes in material with an

electrical conductivity distribution (7, then (1.6) becomes

V7H = J, + f (1,10)
iWJM

Y2 " i(U'UG(if+(r) 1(1.l l)

where A, e, and o- are functions only of position in space.

A vector potential A is now defined such that

H / VxA (1.12)

E~icu L V.4A . (1.13)

If I is taken to be a constant, then equation (1.5) is satisfied trivially, accordingly, henceforth

,u is taken to be uniformly equal to its free space value /AO. Working with equation (1.10) gives

×x = x (V xA ) (1.14)

2 V- V'A() - ,= 4+ Y IV 2)  1 -A

V2; 2,7 - V(V.) - v2VJTV7.Aj 74 (1.15)

1L, (_ (1.16)
V2 Y2

" _. (V'A'TV(Y2 ) = - 4  (1.17)

Equations (1.12) and (1.13) admit a restricted gauge transformation for A. such that

W'= A+70 and A generate the same fields if 7t satisfies equation (1.17) with J4 set uni-

formly equal to zero.

If oE and o- are taken to be functions only of the altitude coordinate z. then equation

(1.17) becomes

V2_ 7; _(V4 I-q =d_-7 (1.18)
Y2 dz

whose homogeneous solutions can be divided into solutions with A in the direction and
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solutions with A" perpendicular to the direction. In the first case we assume the solutions to

be separated in the form

S(z)F(x,y)(1.19)

which gives from (1.18) with J' set equal to zero

d2f(Z) _ - d df(z) - (y 2+k 2)f(Z) 0 (1.20)
dz2  y2 dz dz

VHF(x,y) + k2F(xy) = 0 , (1.21)

where the subscript H indicates that derivatives occur only in the horizontal plane. From sym-

metry considerations one has that the solutions arising from the separation (1.19) can give only

transverse magnetic fields. Boundary conditions on f(z) may be deduced from the facts that the

transverse field components ET and Hr must be continuous across discontinuities in a-, and

fr-0 at a discontinuity on one side of which o-=oo. From (1.13) we have for Er

PT = i"A-_'2- ) VHF(x,Y)  (1.22)

which gives that

1 dft(z) 1 df2(z)
2 d o dz (1.23)

across a discontinuity in a-(z) at z-z 0 , and

df(z). - 0 (1.24)

at a discontinuity at z-zo in o(z) on one side of which r=,, and from (1.12) we have

FIT - f(z)(VxF(xy) .- (1,25)

from which we have

f I (Zo) " f Z(.O) (1.26)

across a discontinuity at z-zo in o-(z). In the case of horizontal homogeneous solutions for A

we assume separation in the form

4 - q(:)O(x,y) (1.27)

where Q has no Z component and we exploit the previously mentioned gauge freedom to make
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the constraint

V-Q-0 o(1.28)

This separation gives

- (Y 2+k 2)q(z) = 0 (1.29)dz2

V7'(x,y) + k20(x,y) = 0 (1.30)

Note that by (1.27) and (1.28) we have

V4= q(z)V'0 + O.Vq(z) = 0 (1.31)

so according to (1.13) this class of solutions to (1.18) can give only transverse electric fields.

For Fr we have from (1.13) and (1.27)

E= -iwoq(z)o(x,y) (1.32)

which implies that

q1 (zo) = q2(zo) (1.33)

across a discontinuity at z=zo in or(z), and

q(zo) = 0 (1.34)

at a discontinuity at z=zo in -(z) on one side of which cr=oo. For Hr we have
Hr = d(z) {zxo(x,y)} (1.35)

dz

which gives that across a discontinuity in o-(z) at z=zo

dqj(z) dq2(z)
dz :0 dz :0 (1.36)

Mutual orthogonality of different solutions to (1.20) under identical boundary condi-

tions is demonstrated as follows,

dff , f ,f, - I d ,+ (1.37)
dZ m2n Ymf 2 in 4 dz Y2 +

2 . n'(1.38)

Mimi"



- 1<y2
j y" d:z

2Ij, JI I=-1, (y2-+kn); '1 f-"-2+k.,

fn ,. . , f'n~'

Y-Y

(k,2-k,,)f i dz = - 1 ' = 0 (1.39)

indicating that if the eigenvalues of the two solutions are different then the integral must be

equal to zero. The corresponding demonstration for solutions to (1.29) is

-(q qn'-q. qm') = mn- . (1.40)

d2)

= q,.qn(k.2-k)

(k, -k2) q" q dz = (qmqn'-qqm')/ = 0 (1.41)

If nn, it is clear that the integrals will always be positive provided that the functions within

the integrals are not uniformly zero.

In anticipation of a future need, Green's functions solving the equations

kZ(q , ) - q. i (1.42)

y,(z) 2 dz

-- {(z -+k g,( k 2k) -2)

and

/,k) q (z) 2+k}g ,(.z'.'k) (-') (1.43)

will now be constructed. A valid solution to the first of these equations is

a2gz',k) -fL (z<,k)f L(z >,k) (I .44)
v (z),k 1) (z') 2 WAk)

2 (k = H (z~z,k)f (Y +k)gH(t',k),=f(z-) (1.43)

and a valid solution to the second is

- ~ . .



6i

qL (:<,k) (:,,(1.46)

,' W1(k)

WH(k) qL(Z,k)qL'(:,k) - qL'(z.k)q (:.k) (1.47)

where /L and ft are solutions to (1.20) with k2 specified and their first derivatives constrained

to vanish at the lower and upper ends respectively of the range of z. 4L and 41 are solutions to

(1.29) with k2 specified and their values at the lower and upper ends respectively of the range

of z constrained to vanish, _< is whichever of z and z' is the smaller, and :-, is whichever of z

and :' is the larger. Note that, if kg,, is one of the eigenvalues of (1.20) with all constraints

enforced and and conditions imposed to require discreteness of the eigenvalues and kl',, is one

of the eigenvalues of (1.29) under the same circumstances. g, is singular wherever k is equal

to any of the ki, and gH is singular wherever k is equal to any of the k1j,, These solutions to

(1.42) and (1.43) are useful for practical calculation of g, and gtj respectively, but inappropri-

ate for the purposes of this derivation.

The derivation of the alternate form of g, starts with the identity

d ~- g = - (k--kO,,) (1.48)

+ f"8(z-:')

derived in a manner similar to that which produced (1.38), where f,, is ./,(z), g, is g, (z.:',k),
y2 is y 2(z), and primes denote differentiation with respect to z. Integration of (1.48) with

respect to z gives

= y 2() d: + - (1.49)

from which we have

g f~ . (z) dzYt -/If - y d( (1.511).

where C is anything that is orthogonal to j,(z) according to the definition given by (1.39): a

logical guess as to the nature of C gives

91 .z:,)-i I fmz' .f,,,()
gl (z~'.k ) -o0 (k12M-0" -y2(:') !,,(.2
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since from (1.39) we have

y"(z d: 8,,,,I,,(1.53)

Plugging (1.52) back into (1.42) gives

(1.54)

exactly the expression produced if one does a series expansion of 8(z-z') in the functions

.t.(:). The derivation of the alternate form of g1l follows the same pattern, with the result

gH(. z', ) .- £ I q,, (z') q, (z)
IHi, ,q , ( ( (1.55)

Note that the summation in (1.52) starts with m-0, whereas the summation in (1.55) starts

with m=1 due to the different boundary conditions on the solutions of (1.20) and (1.29) there

is a Oth order solution to (1.20) whereas the lowest order solution to (1.29) is 1st order. Pro-

vided that the ],(:) and the q,(:) each form complete sets, which they should under the

proper boundary conditions, expressions (1.52) and (1.55) should be valid solutions to (1.42)

and (1.43) respectively- one condition that should give complete solution sets is that .r(:) goes

to - at the upper and lower ends of the range of z.

In considering the electromagnetic fields resulting from mode excitation by a com-

pletely vertical current distribution, we define

j- =- J- (1.57)

and from symmetry considerations we can write

A" = :-A. .(1.58)

We define

A: (fO,:) - k h....k) J,, (kp) (1.59)

its inverse operation

h,,(:. k _ f J p dp AO (1.60)h,,,(z~k 7r f 1q

------ ___No w
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x A:(p,O,z)e ...."J,,(kp)

the expression

.(p.9':)= .f k A ,4(z,k)e 14J,,,(kp) (1.61)

and its inverse

,m(zk)= p dp dO (1.62)

x "J.(p,Z)e-"-"J,,(kp)

where J,, (kp) is a Bessel function of the first kind of order m. From (1.18) we have

V2 2 1 dy2 aA:
2A- - y 2 A y dz d z J" (1.63)

given the identity

V 2emJm (kp) -k 2e;"'Jm(kp) (1.64)

we substitute (1.59) and (1.61) into (1.63) to get

Se"' j k Akd (kp) (1.65)

X zT y22hm/+k2)h - y2 _hm +  --0

Integration with e' " over all 0 gives

O I k dk J,(kp) (1.66)

" (y 2+k 2)h, - + Jf =0x &Z-- -  
2 'y

2  dz &z

for every integer n; that (1.66)must hold for all positive values of p suggests that the expres-

sion in the brackets may be uniformly equal to zero, and indicates that even if it need not be

uniformly equal to zero it can safely be constrained to be that way. as any solution for /,, that

satisfies (1.66) is acceptable. Therefore. we can write
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hm"- iL dh'- (, 2+k 2)hm = ,, (1.67)
.Y dz

where a prime denotes partial differentiation with respect to z, and use of the Green's function

g[ defined by equation (1.42) gives from this

hm (:,k) - - gv(z, k)(z .,k) dz' (1.68)

An alternate expression for A. is

A:(p,O,.) A , (p,)e-'" (1.69)
m

A. (pz) k dk h,(zk)J,,(kp) (1.70)
0

this last expression way be rewritten as

A:,(p, z) = / f k d hn(z,k)H(21m(kp) (1.71)

by way of the identity

f k dk h,(Z.k)H f ,2 (kp) (1.72)

2 fk dk h,(zk)J,,(kp)

0

where p 2
Dr (x) is a Hankel function, composed of Bessel functions of the first and second

kind according to the definitions

H',(x) J,(x) + iNr,(x) (1.73)

W12),(x) - J,(x) - iN,,(x) (1.74)

the functions IP2 ,,(kp) were chosen over the functions Jm (kp) to describe the behavior of

the A,r with respect to p because of properties of their asymptotic behavior whose utility will

become apparent below.

The identity (1.72) derives from the identities

Jn(-X) - (-I)" j,,(x) (1.75)

H1 21m (-x) - -(-I)- .f2 r (x) (1.76)

!I
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taken from Abramowitz and Stegun. The first, used with (1.60), gives

h,,(Z,-k) - (-1)m hm(z,k) (1.77)

from which we have by (1.76)

h, (:,- k) H") , (-kp) - -h,. (z,k ) P1',, (kp) (1.78)

It follows then that

f k dk h,,(z,k)H' 2rm(kp) (1.79)

k dk h,(-,k)H'fPm(kp)I 0
and hence

f k dk hm(z,k)H(2t m(kp) (1.80)

= f k dk hm(z,k)(HP'm (kp)+H 2 ) (kp)}
0

- 2f k dk hm(z,k)Jm(kp)
0

Referring back to (1.52), we see that we can rewrite (1.68) as

hm(zk) 2 f,(z)M-0o (k 'n- k )  IV" 1.

Xf f,,(Z') d'}
X (z,) J, W ,k ) ,

which with reference to (1.62) may be expressed in the form

hm(z'k) "-L _ ( I_,- I K, (k) (1.82)

Knm(k) T f p dp dO dz (1.83)

0f(-) 1
x Jm(kp)e- m Y (Z).(pOZ)

i

--,,. - -.
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expression (1.71) becomes

A:, (p,:) =---- / L,,(p)

K,m (k) H 2 ,m (kp)
L,,m(p) =f k dk (k- k2) (1.85)

The Hankel function used in the integrand of this integral has the assymptotic form

H2m xp °jx 2 _ (1.86)H (2),. (X) == xp_\x2F

where x>>l and x>>m ,

which suggests that (1.85) may be solved by contour integration, with the contour being drawn

through the lower half plane and passing below the branch point in H_2),m(kp) at k=O the

solution is

Lnrm(p) = iirKm(kvn)F- 2'. (knp) (1.87)

where kv, is the root of k2, that has a negative imaginary part. Hence, we have for A,,,

A:m(p,z) = C". fn(Z)H2),n(k&np) (1.88)
n-0

i" K,,,,(kv,) (1.89)
C, =4 IV,

Equation (1.86) indicates that the modes which attenuate most slowly with increasing distance

from the source are those that have the smallest values of Ilm(k,)I: accordingly, the closer to

the transmitting antenna the point at which one wishes to calculate the field values is, the more

modes are required to give answers of acceptable accuracy. Note that (1.88) is a proper solution

to the problem only if the eigenvalues are discrete.

As an example, suppose that the transmitter is a vertical point current dipole of dipole

moment D, a dipole whose length dl is made arbitrarily small and the current flow I through

which is made correspondingly large in such a way that the dipole moment D of the dipole.

defined by

SD- I dl (1.90)

has a finite value in the limit of infinitely jmall length and infinitely large current- then we have

for J.

,... M
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J_ = D (p)8(:-z') (1.91)

where :' is the antenna's vertical position and its lateral coordinate is p=0. Since J. has no

0-dependence, only terms of order m=0 contribute. This being the case, we immediately have

from (1.83) and (1.89)

CO -D f, (z') (1.92)C = 4 -)2(ZI)/IV,

Cn,= 0 for m;zO (1.93)

In considering the case of a horizontal current distribution, we take

J.=0 , 74 = JH , (1.94)

and assume infinitely conducting plates at the top and bottom of the range of the altitude coor-

dinate; in order to maintain consistency with the behavior of the homogeneous solutions at

such boundaries, we require that AH=0 and A:'=O at these upper and lower boundaries, con-

straints that serve to fix the gauge and thereby permit a unique solution for A" everywhere

between the plates. We define

W -" =H + XA: , zAxHO , (1.95)

which gives from (1.18)

V, 2 AH - Y'
2AH = JH (1.96)

V2vA- - dz z _2A: - 1 dzAI"H (1.97)

We define the expressions T,, (z,k) and J,, (z,k) such that

"AH(p,O,Z) = f k d -,(z,k)e"'nJ,,(kp) (1.98)

2W f

m(z,k) - 2 f f P dp dO AH(p,O,z)e-""J,,(kp) (1.99)

,H(P,OZ) - f k d dO(zk)e"J (kp) (1.100)

J,~z~) 2- jr p dp dO(101
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)( 7H(p,9,z)e-"NJ, (kp)}

substitution of (1.98) and (1.100) into (1.96) with the use of the identity (1.64) gives

- (y 2+k 2)T,(zk) = m(Zk) (1.102)

by the same argument that gave (1.67). Calculation of V-.i" from (1.98) gives

V'AH = f k dk -,,(z,k).Ve'' J,,(kp) , (1.103)

since we have

V 7.m(z,k) = 0 (1.104)

as Ym has no z component. This motivates the expression of A: in the form

A:(pO,z) = f k dkI (z, k) -V e Jm(k p) ,(1.105)
noa

-,(z,k) - --- J p dp dO (1.106)

x A:(p,O,z)Ve-I'MJm(kp) I

Substitution of (1.103) and (1.105) into (1.97) with use of (1.64) then gives

-,(z, k) 2 ,m'(z , k) - (y2-k 2)fl (z,k) (1.107)

I d Y2

Tm(z, k)

The requirements that iH=O and A-'-0 at the upper and lower boundaries places the same

conditions on 7,, and fm respectively, giving Tm the same boundary conditions with respect to z

as q,, and X as fin.

Use of the Green's functions gH and gv give for 3"m and 17m

T(z,k) - - f gH(z,Z',k) (z',k) di' (1.108)

-fm'(z,k) - f jgi(z.z',k) (1.109)
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1 dy2 (z') T(z'. k)d,-'
x 2(,) d:'

use of (1.55) and (1.101) in (1.108) gives for 7,,,

T . ( q,(-) K,,(k) (1.110)
27 (k' -k2) IH,

u 2,,oo
Kn,,(k) - f J p dp dO dz (. )

x q,(z)e-'m'J,(kp)J71(p,O,z) I
Rewriting (1.98), we have

AiH(p,Oz) t= AH,(p,z)e-' 8  (1.112)
Mr-I

AH,.(P,Z) = k dk-,,(z,k).J,(kp) (1.113)
0

From (1.99) it is seen that T,(z,k) has the same inversion properties with respect to k as does

J,, (kp), so by arguments similar to those used with (1.70) we have

AH,(PZ) = h f k dk T,(z,k)H(2 ),m(kp) , (1.114)

from which we have by (1.110)

I -. q, (z)
,W (PZ) = -- I EM, (P)(li

n-I n

(P fk (k ) fP'),, (kp )
Fnn(p) =.f k dk kn "kH2i~P (1.116)

-oo (k-' -k )

Contour integration as with (1.88) gives

mL(p) - i 1r km(kHn)'B 2)(kHnp) , (1.117)

and hence

AHm (P,Z) , Dnm q,(z)H"2 ',,(kHp) (1.118)

DK,(kH) 
(1.119)

4 /.,.
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Work with (1.109) presents a complication, in that both g, and 3,, have numerous

singularities in the complex k plane, in order for contour integration to be practical these func-

tions must be expressed as series expansions about their singular points, but if both functions

are so expressed the integration process becomes impractically cumbersome. The problem is

solved by defining two versions of ', in each of which one of the two functions is expressed

in expanded form and the other is left in functional notation,

1Hm(:,k) K,. W u, (, k) (1.120)-f/.,, z~ )==-2--r IH, (k ,-0 2

U I d-y2 (Z')u,(:,k) .f gp.(z,z',k) - - - (, '  (1.121)
y(z') dz

x q,(z') dz'

where (1.110), the series expansion of -m, is used, and

1 fnmt,,(k) 1 .

Fv, (z, k) - - M,, (k,,-k2 ) (1.122)

MfI(k) - p dp dO f dz dz' LZ'Av iz (1.123)
0 1 Y ,(z) dz

x gH(z,z',k)e-*J,(kp)-YH(p,O,z)

where (1.52), the series expansion of gv, is used with (1.108) and (1.101). Although in princi-

ple P'v, and PH, are each equivalent to l,, the standard contour integration algorithm will not

see all of the singularities of either, and for purposes of contour integ ation they neatly divide

the singularities of n,, between them; the function -T,,

PT,, - V. + -Hm . (1.124)

is not equal to f,, (z,k), but within a contour integral it will behave as if it were. The expres-

sions (1.121) and (1.123) that contain the hidden singularities are simple enough in form so

that contour integration will usually not be required to evaluate them' expressions (1.44) and

(1.46) may be used for the Green's functions in the integrands of these expressions.

We can now represent (1.105) in the form

A:(p,O,z) - ( {A:,,(pO,z)+AH,(p,O,:)) (1.125)
m7
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A.4'm(pO.z) = f k k f',,,(z.k)'Ve'm"J,,,(kp) (1.126)
0

AH (p,O,z) - f k A TH, (:,k).Ve"J,,(kp) (1.127)
0

with the understanding that the integrals will be evaluated with contour integration. Inspection

of (1.109), (1.99), and 1.52) shows that T,(z, k), and hence fr,(z,k) and 1f,,(z,k), have the

same inversion properties with respect to k as J,, (kp), so the same line of argument that gave

(1.114) and (1.71) permits us to write

A-v,,k(p,O,z) -/ f kdk (1.128)

x 'v,,(zk)'Ve" -P2)m(kp) }

A:H,,(p,Oz) - f {k dk (1.129)

X ffH(z,k)-17eim1H12)"(kp) }
Writing these out, we have

A:H(pO,:') -- 4- H k dk (1.130)
41r 

I H -_o0

R, (kp) }(k ( - k2---") . (z'k)'-Veimn ' P )

Av,(pO,z) r -- , -- k dk (1.131)

MLm (kP)}

X (kR_,k 2 ) fn(z)'Ve mHP2)m(kp) .

with only the poles explicitly shown in the denominators being evaluated. The solutions are

A:Hm(pOz) u- , u(zkH,) (1.132)

x Dflm.Ve'ml-P2)m(knp) }
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where Dnm is as given in (1 119), and

A:= { f",(z) (1.133)

x V- ,' e'H(,, (k p)

where

I ,,.m(kv.') (1.134)B"= 4 i1.

A useful practical example for this work is that of a horizontal point current dipole of dipole

moment M; this is represented by the expression

JH(P,O,Z) = M 8(p)8(z-z') / (1.135)
27rp

where k is a unit horizontal vector and z' is the altitude coordinate of the dipole, which is taken

for convenience to have the lateral coordinate p=0. As with the vertical point dipole case. only

the m-0 order contributes, and the appropriate coefficients are

S = q, (z')h (1.136)
4 IH,

u A, (z) dy(z) gH(z,z',k,) dz h (1.137)

D, Bnm0 for m#0 (1.138)

If one's conductivity profile cr(z) is taken to be composed of homogeneous slabs, then

equations (1.20) and (1.29) have simple analytical solutions within each of the slabs, and these

solutions are easily patched together at the interfaces by use of the appropriate boundary condi-

tions. However, the solutions contain exponential factors, and as a practical consequence of this

the solution process is numerically unstable. Nevertheless, excellent results were obtained by

working a Ricatti transformation on the equations, and then deriving solutions to the

untransformed equations from the Ricatti equation solutions. Both (1.20) and (1.29) can be

represented in the form

y"(x) + al(x)y'(x) + ao(x)y(x) , 0 (1.139)

the Ricatti transform is
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v(x) = (1.140)y(x)

and equation (1.139), transformed by this substitution, becomes the Ricatti equation

V'(x) + v2(x) + aI(x)v(x) + ao(x) = 0 (1.141)

From (1.140) we have that the inverse transform is

v(x) - C exp{f v(t)dt} , (1.142)

where C is some arbitrary constant; once a solution to equation (1.141) is obtained, the relation

(1.142) can be used to give from it a solution to the equation (1.139). The most general form

of the Ricatti equation is

v'(x) + a,(x)v2 (x) + ai(x)v(x) + ao(x) = 0 (1.143)

and it is a property of this equation that if two particular solutions to it, vj(x) and v,(x), are

known, then a general solution v(x) is given by

v(x)-v2(x) = K exp{fa2(t)[v2(t)-V(t)]dt (1.144)

where K is some arbitrary constant. In the event that the coefficients of (1.143) are all con-

stants, such that

v'(x) + av2(x) + bv(x) + c 0 , (1.145)

then there are two constant solutions that can be determined by the quadratic formula;

V - 2a (1.146)2a

Within a homogeneous slab both equations (1.20) and (1.29) give the constant coefficients

a-i , b-O c--(y 2+k2 ) , (1.147)

for which the constant solutions are

V1 - -6 , V2  V - Y2+k2 (1.148)

This gives from (. 144)

-x)+ K e+2nr (1.149)
v (x)-

I1
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Some algebraic manipulation of this, with appropriate choice of K. gives

V(x) = - - (1.150)
tanh{/3(x-xo)+e}

IE= V/logjVO- . (1,151)S/.I Vo+

where

Vo = V(xo) (1.152)

The corresponding solution for y(x), developed from (1.150) by way of (1.142), is

y(x) - yo[cosh{t(x-xo))+(vof)sinh{I3(x-xo))} , (1.153)

where

Y0 = Y (xo) . (1.154)

The matching conditions at the interfaces between slabs, derived from (1.23), (1.26),

(1.33), and (1.36) by way of (1.140), are

V1  ,2 (1.155)

VI1 Y2

for the Ricatti solution to (1.20), and

VI - V2  (1.156)

for the Ricatti solution to (1.29). The boundary condition on v at an interface with an infinitely

conducting plate on one side is v-0 for the first case, but for the second case v goes to infinity

at the boundary. the approach that was used to deal with the infinitely conducting end plates

was to use (1.153) in combination with either condition (1.24) or condition (1.34) to derive a

value of v at the side of the end slab opposite to the side interfacing with the infinitely conduct-

ing plate. For an end slab of thickness t, the value of v at the side in question for boundary

condition (1.24) is

v - -3tanh(/3t) (1.157)

for the slab just below the upper end plate and

v - +P3tanh(3t) (1.158)

for the slab just above the lower end plate, and for boundary condition (1.34) it is
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i, = h( ) (1.159)tanh(/pt)

for the slab just below the upper end plate and

V = + /3 (1.160 )tanh(i/t)

for the slab just above the lower end plate. A practical limitation on this method is that it is

unsafe for the end slabs to be more than about five skin depths thick, or the aforementioned

numerical instability problem can render the use of (1.153) dangerously inaccurate. Given

these end slab interface values, the appropriate matching conditions, and expression (1. 150), a

complete eigenfunction may be constructed, as only one end slab interface value is necessary

for this purpose, the other can be used as a check to see if the eigenvalue has been properly

determined.

An appropriately sized set of eigenvalues can be calculated to a good first approxima-

tion with a matrix approach. Equations (1.20) and (1.29) are written in the form

L t. f ( - k .J(z ) (1.16 1)

d2 Y2(z) d

LH q(:) = kHq(:) (1.162)

LH - d- Y

and the eigenfunctions f(z) and q(z) are expanded in cosine and sine series respectively so that

the boundary conditions at the end plates are automatically satisfied-

f(:) - ao + a, cos(jtr:/d) (1.163)
I-i

q(:) - b, sin(j cr: d) (1.164)
/-I

where d is the distance between the end plates and for the sake of computational practicality the

series have been truncated after N terms. The coefficients are then represented as column vec-

tors and the linear operators expressed as matrices-

1 A,,a, - kla, (1.165)
,-0
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Y B,,b, = klb, (1.166)
1-1

d

.4,, = " f {L cos(jrz/d)}cos(Ir:/d) d: ,1I 0 (1.167)

Ao,= -f L cos(jlrz/d)} dz (1.168)
d0

B1, = f {LH sin(j~rz/d))sin(17rz/d) dz (1.169)
d0

In dealing with the L;, operator, one should note that the second term of the operator contri-

butes an array of delta functions to the result of the operation; limit calculations indicate that

the coefficient of this term is

I 8 -Z,) log - l (1.170)
2) dz

where there are N homogeneous layers and :, is the coordinate of the interface on top of layer

number i. Due to the truncation of the trigonometric series representations of the eigenfunc-

tions, the series cannot properly fit the most sharply curved of the eigenfunctions, and as a

result of this there can be serious errors in the determination of their associated eigenvalues.

The only effective way to deal with this problem is simply to bear in mind that some of the

eigenvalues computed by the matrix method are going to be seriously in error, with those

eigenvalues associated with the most quickly attenuaung modes being particularly at risk, and

be prepared to detect and discard the bad ones. Square matrices with dimensions on the order

of 80 are easily processed for their eigenvalues by the EISPACK library of routines, developed

for use with matrix eigenvalue problems and supported by many major scientific computing

facilities- thanks to this library of routines it is quite practical to use outsized series expansions

for the eigenfunctions in order to guarantee that a useful set of eigenvalue solutions remains

after the grossly erroneous solutions have been skimmed off. The EISPACK library is described

in detail by Smith et al. (1976) and Garbow et al. (1977) in the two primary users' guides for

this library. It was found in practice that a useful set of eigenvalues could usually be obtained

by having the number of terms in the eigenfunction expansion to be double the number of

eigenvalues desired for use, thus giving double the desired number of eigenvalues, and then

discarding the eigenvalues associated with the most rapidly attenuating modes until the eigen-

value set is down to the desired size. As mentioned previously, the rate of attenuation of a

mode is roughly proportional to the absolute value of the imaginary part of the square root of
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its eigenvalue.

As well as rendering some of the eigenvalue solutions to the matrix formulation com-

pletely mendacious, series truncation effects can easily result in minor errors in eigenvalue

determination that are nevertheless sufficient to interfere with eigenfunction construction from

the eigenvalues, a method is needed to detect the serious errors and refine the valid if approxi-

mate solutions. The method that was used for this purpose is to construct a solution for v(z)

from the top layer down to the top of the bottom layer and determine the mismatch between

the value of v computed at this point from above and the value computed from below, this

mismatch being negligible in magnitude if the eigenvalue used for the construction was prop-

erly determined. In the likely event that the mismatch is not of negligible magnitude, linear

perturbation methods give perturbation of the mismatch value with perturbation of the pro-

posed eigenvalue, and a version of the Newton-Ralphson method adapted for use in the com-

plex plane may then be used to home in on the proper value of the eigenvalue in question pro-

vided that it is not too far away in the complex plane from the approximate value calculated by

the matrix formulation. In the event that the trial value is not sufficiently close to the proper

value to give convergence on it, the procedure will still try to find a valid solution, with the

most probable outcome being a redundant convergence on some other eigenvalue. The bottom

of the topmost layer could have been used instead of the top of the bottommost layer for

mismatch calculation and reduction, but that interface will typically be located within a highly

conducting zone modeling seawater, and it was found that a mismatch parameter calculated at a

point within a highly conducting region can lead to unusably small radii of convergence in the

complex k plane about the problem's eigenvalues.

In the case of a receiver located at the interface between two layers, in principle the

magnetic field and the horizontal components of the electric field should be calculated as having

the same values whether the receiver position is taken to be just above the interface or just

below it: in practice, the method of Frieman and Kroll sometimes gives somewhat different

field values for the two receiver positions, the cause of this discrepancy being traceable to a

numerical problem. If. for example, the interface is between seawater and rock with an electri-

cal conductivity many orders of magnitude lower than seawater, it turns out that the calculation

of the field values at a receiver just above the interface involves taking the differences between

large numbers to get a result smaller by several orders of magnitude, whereas for a receiver just

beneath the interface the calculated field values are of about the same order of magnitude as

the numbers subtracted from each other to get them: in the former case there is a somewhat

greater opportunity for the amplification of truncation errors than is present in the latter case,

and in the former case errors in the magnitudes of the calculated electric field values of at least

., .... • ..... .,. 1. ... "- l l "ul~l'
" - "- '

.. . .. . l
' - ' ' '

"" " " ': - " .... . .. . . :... . '
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its eigenvalue.

As well as rendering some of the eigenvalue solutions to the matrix formulation com-

pletely mendacious, series truncation effects can easily result in minor errors in eigenvalue

determination that are nevertheless sufficient to interfere with eigenfunction construction from

the eigenvalues, a method is needed to detect the serious errors and refine the valid if approxi-

mate solutions. The method that was used for this purpose is to construct a solution for v(z)

from the top layer down to the top of the bottom layer and determine the mismatch between

the value of v computed at this point from above and the value computed from below, this

mismatch being negligible in magnitude if the eigenvalue used for the construction was prop-

erly determined. In the likely event that the mismatch is not of negligible magnitude, linear

perturbation methods give perturbation of the mismatch value with perturbation of the pro-

posed eigenvalue, and a version of the Newton-Ralphson method adapted for use in the com-

plex plane may then be used to home in on the proper value of the eigenvalue in question pro-

vided that it is not too far away in the complex plane from the approximate value calculated by

the matrix formulation. In the event that the trial value is not sufficiently close to the proper

value to give convergence on it, the procedure will still try to find a valid solution, with the

most probable outcome being a redundant convergence on some other eigenvalue. The bottom

of the topmost layer could have been used instead of the top of the bottommost layer for

mismatch calculation and reduction, but that interface will typically be located within a highly

conducting zone modeling seawater, and it was found that a mismatch parameter calculated at a

point within a highly conducting region can lead to unusably small radii of convergence in the

complex k plane about the problem's eigenvalues.

In the case of a receiver located at the interface between two layers, in principle the

magnetic field and the horizontal components of the electric field should be calculated as having

the same values whether the receiver position is taken to be just above the interface or just

below it, in practice, the method of Frieman and Kroll sometimes gives somewhat different

field values for the two receiver positions, the cause of this discrepancy being traceable to a

numerical problem. If, for example, the interface is between seawater and rock with an electri-

cal conductivity many orders of magnitude lower than seawater, it turns out that the calculation

of the field values at a receiver just above the interface involves taking the differences between

large numbers to get a result smaller by several orders of magnitude, whereas for a receiver just

beneath the interface the calculated field values are of about the same order of magnitude as

the numbers subtracted from each other to get them, in the former case there is a somewhat

greater opportunity for the amplification of truncation errors than is present in the latter case.

and in the former case errors in the magnitudes of the calculated electric field values of at least
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50% (with a precision of 7 significant digits for a real floating point number, and with a complex

number represented by two real floating point numbers) were not uncommon. Some numerical

exploration of the problem was done with a two layer model with seawater on top and poorly

conducting rock below, for which there are analytical expressions for the electric and magnetic

fields, and agreement between these expressions and the method of Frieman and Kroll was

fairly good (usually to within 5%) provided that the receiver position used with the latter was

below the interface. It was noted that in cases where the conductivities of the layers above and

below the interface differed by less than a couple of orders of magnitude the discrepancies

between the field values calculated for the two receiver locations were usually small enough to

be safely disregarded.
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Section 2

Adaptation of the Method of Frieman and Kroll

to Data Inversion Work

Let us suppose that for a given conductivity profile a-0 we have, in accord 'with the

method of Frieman and Kroll (see section 1), determined an appropriate set of eigenvalues,

eigenfunctions, and Green's function component functions, and that we have used these to cal-

culate a set of electromagnetic field values at selected points for selected frequencies. In the

probable event that we find these field values calculated from the profile roo to be at least mildly

inconsistent with experimental measurements of the electromagnetic field, we wish to find

some conductivity profile o- 1 which yields calculated field values that are consistent with the

experimental measurements.

The first step in the inversion algorithm is to find some way to derive expressions of

the form

8, =f g,(z) So-(z) dz , i= toN , (2.1)

where F, is one of the N calculated field values, So-(:) is a small perturbation of the conduc-

tivity profile cro(z), 8F, is the accompanying change in F,, and g, (z) is an integration kernal to

be determined. The assumptions of vertical stratification and horizontal isotropy, implicit in the

method of Frieman and Kroll, are retained, and imposition of the simplifying assumption that

the conductivity profile is composed of discrete homogeneous slabs turns (2.1) into

8, - C, So-, I1 toN , (2.2)
/-I

where there are M layers in the profile. Local linearity is assumed in both (2.1) and (2.2), as

global linearity between a- and the F, does not exist.

The field values F, are calculated from a collection of eigenvalues, eigenfunctions, and

Green's functions, which in turn derive from the solutions of the equations (1.20) and (1.29),

d2f(z) ,1 dI 2(z) df(Z) - {,Y2(z)+kl}f W 0 (2.3)

dz 2 Y2(z) dz dz
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d2 q(:) - {y2 z)+k 2 q-) = 0 (2.4)
dr.2

Y2(z) = iw oo(z) (2.5)

under various boundary conditions. Within a homogeneous slab both (2.3) and (2.4) have the

form

f"(z) - (y 2+k 2)f(z) - 0 (2.6)

if we assume f, -y2 and k2 to be the perturbed eigenfunction, conductivity profile function, and

eigenvalue respectively, and make the substitutions

f(:) fo(z) + Sfo(z) (2.7)

Y2(z) = ,2(z) + 8,o(z)~~k 2 - k +gk

where fo, -y', and kj? are the unperturbed eigenfunction, profile function, and eigenvalue

respectively, we get

fo" - (yd+k 1 )fo(z) + Sfo"(z) - ('yd+k )&fo(z) (2.8)

- (8-y0+8k)fo(z) - (&y/+Uk0)8fo(:) = 0

Assuming that the perturbation is small enough so that it is safe to discard the second order

term, we then have

8fo"(z) - (y +k )Sfo(z) = (8,y+8k )fo(z) , (2.9)

since in order for f 0 (:) to be a proper unperturbed solution we must have

fo"(z) - (6,+k )fo(z) - 0 (2.10)

The general solution to this equation is

8fo(z) - A cosh(K 0 z) + B sinh(Koz) (2.11)

+ (86d+8kd) g(z) ,

where A and B are undetermined constant coefficients,

K - y, + k , (2.12)

and g(z) is a particular solution to the equation
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"(z) - Kd g(:)-fo(:) (2.13)

Solutions to (2.10) are of the form

f(=) - C cosh(Ko:) + D sinh(Ko:) , (2.14)

wheie C and D are undetermined constant coefficients, and substitution of (2.14) into (2.13)

gives as an acceptable solution to (2.13) by standard mathematical techniques

g(:) = C z sinh(Koz) (2.15)

1 2K I

+ D 2 o cosh(Koz) - I sinh(Ko:)

Some straightforward if tedious algebra gives for 8fo(z) from (2.11)

8fo(:) - E 8fo(:o) + F Sfo'(zo) + (8y-+Bko ) G (2.16)

8fo'(z) - H 8fo(zo) + I 8fo'(zo) + (8y +gk ) J (2.17)

E - cosh{Ko(z-Zo)) (2.18)

F - (I/Ko) sinh{Ko(z-zo)} (2.19)

G - g(:) - E g(:o) - F g'(zo) (2.20)

H - Ko sinh{Ko(z-zo)) - K F (2.21)

I - coshlKo(z-zo)} - E (2.22)

J - g'(z) - H g(zo) - I g'(zo) , (2.23)

where z0 is within the same slab as z. These relations, with the appropriate boundary condi-

tions, can be used to construct 8fo(z) and solve for 8k in terms of the conductivity profile

perturbations 8o, for the M homogeneous layers considered to make up the profile. It is help-

ful that, although special methods must be used to avoid precision problems in the determina-

tion of fo, no such difficulties arise in the calculation of 8f0 from f0 once f.I has been deter-

mined.

That both the perturbed and unperturbed eigenfunctions must satisfy the same match-

ing conditions at the layer boundaries allows us to deduce matching conditions for the perturba-

tion function. From the boundary conditions (1.33), (1.34), and (1.36) we have that perturba-

tion functions on solutions to (2.4) must satisfy the conditions at a layer interface at :-:,j

.- ..
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aqol(Zo) 8q 0 2 (zo) (2.24)

8qo'(-o) = 8q0 2'(ZO) , (2.25)

and at a boundary at :=zo between a layer of finite conductivity and a layer of finite thickness

and infinite conductivity

8q0(zo) = 0 (2.26)

From the boundary conditions (1.26) and 0.24) respectively we have that perturbation func-

tions on solutions to equation (2.3) must satisfy

SfOj(ZO) = 8f02(:O) (2.27)

at an interface at z=zo between two layers of finite conductivity, and

8fo'(Zo) - 0 (2.28)

for a boundary at z-zo with a layer of finite thickness and infinite conductivity. From boundary

condition (1.23) we have for the unperturbed and perturbed functions

fot'(ZO) = f02 (2.29)

fOl'(ZO) + 8f 0 1 '(ZO) fo2'(ZO) + 8f 0 2'(ZO) (2.30)
vdI + 8yJ4 Y6 + 46

using the binomial expansion and discarding terms of second order and higher gives from

(2.30)

fol' o8fo' foi'8y(.
2 + 2-- -4 (2.31)

fo2' Vf02' f 2'o2 'By&2
vd2  vd 02

and use of (2.29) then gives

V 022- 4Y i I/e2 I/ ]i (2.32)Vc;- ~o t 1Vo, 6"2 Iq

or, alternatively,

Vt?? , 8Yt?2 _ 702,i1

8f02' -e 8foI'- f02' IY2 82 (2.33)
_t?2 Y2
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If for a solution to (2.3) with lis boundary and matching conditions J8fa is the pertur-

bation function value at the interface with the lower infinitely conducting end plate (the

assumption of infinitely conducting end plates capping a conductivity profile of finite thickness

being carried over from section 1) and 8fj), is the value at the interface with the upper end

plate, then by use of the above perturbation function continuation and boundary conditions we

get an expression of the form

'W8fot' CO 8foo + , C, 8),, (2.34)
I-I

+ C+1 8k' - 0

As a practical measure it was desirable to normalize the solutions to (2.4) such that

<f,f>-1 , (2.35)

where the inner product has the definition

<f 3f2> - f " )f2(z) dz (2.36)

and requiring (2.35) to hold for both the unperturbed and perturbed eigenfunctions gives the

condition (again discarding terms of second order)

<f 0 ,8f 0 > = 0 (2.37)

use of appropriate continuation and boundary conditions and some straightforward integration

gives from this an expression of the form

<fo,8fO> - Do 8fop + D, 8V , (2.38)

+ D+j 8ko' - 0,

which may be solved simultaneously with (2.34) to yield expressions for 8k and 8fo in terms

of the layer conductivity perturbations alone; for example, 8kd may be expressed in the form

8k - K, 8o, (2.39)

where the K, are complex constant coefficients. These in turn may be used with the continua-

tion and boundary conditions to give an expression for 8.fn of the form

8f0(z) - L,(z) 8r, (2.40)
'-I
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The determination of the perturbation functions to solutions of equation (2.4) with its associ-

ated boundary conditions is handled in a similar manner.

As a practical matter in the simultaneous solution of equation pairs such as (2.34) and

(2.38), it was found that a straightforward approach of scaling followed by elimination of a vari-

able through subtraction frequently lead to precision problems' for example, often one

coefficient would be many orders of magnitude greater than the others in each of the two equa-

tions, and it would be the equivalent coefficient in both equations. In practice, it was found that

precision problems of this type occurred very seldom, if ever, in work with perturbations to

solutions to equation (2.4) with associated boundary conditions, but were seldom avoided in

work with equation (2.3) with associated boundary conditions. In the latter case, it was found

that if one multiplied the upper end plate boundary condition equation, of which equation

(2.34) is an example, by the factor F,

F AM (2.41)y ),Jv+k0) I

subtracted the result from the norm condition equation, of which (2.38) is an example, and

used the result in the simultaneous solution in place of the norm equation, precision errors

were always avoided. The functional form of the factor F was determined by inspection of the

coefficients in the norm equation of vanishing terms in 8fou', and the numerical factor of unity

was established by inspection of diagnostic printouts of the simultaneous solution routine.

In the calculation of the Green's function component functions (see for example equa-

tions (1.44) and (1.46)) it was found desirable as a practical measure to normalize each com-

ponent function so that the function value was equal to unity at the layer interface nearest the

end plate boundary from which the function was developed; this normalization condition

together with the appropriate end plate boundary condition and the appropriate value of k 2 was

sufficient to uniquely determine each component function. The requirements that a perturbed

component function must also satisfy the condition at the end plate boundary and be equal to

unity at the normalization interface are sufficient to constrain the perturbation function to the

form

8f,(z) - Co 8k 2 + I C,(z) 8', , (2.42)
-I

and, since the appropriate value of k 2 is always an eigenvalue of some eigenfunction solution of

(2.3) or (2.4), we will always have some expression of the form (2.39) to substitute into (2.42)

to give a solution of the form
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8, (:) = ( Dz() 8-, (2.43)

The propagation of the layer conductivity perturbations from this point on to the field

value determinations may be straightforwardly accomplished by a notational convenience: we

define a vector-like construction such that

A = (AO, AI,A 2, ',A) A + A , , (2.44)

with addition, subtraction, multiplication, and division defined such that

A + B - (Ao+Bo,AI+BI,A 2+B 2, "'" ,A~v+B.,,) (2.45)

A - B = (Ao-B 0,A 1-B 1,A 2-B 2, ,A.w-B) (2.46)

A -B - (AOBo,AoBI+BoA I,AOB2+BoA 2, -.. ,AOB.v+BoAV) (2.47)

A =A A, _ AoB 1 A2  AoB 2  AW _ AoB.W(
B - BO' BO B 'Bo B ' 'B 0  B( (2.48)

The multiplication and division rules are derived from the binomial expansion, with terms of

second order or higher discarded; note that it is a property of this notation that multiplication

and division are exact inverse operations for each other, as they are for normal arithmetic.

Replacement in the field value computation procedure of scalar quantities with the correspond-

ing vector-like constructions will result in field value expressions of the form

F, = (F,0,FiF,2, ,F,M,.) (2.49)

M-F o + F i o,
,-1

The electric field measurements made in the experiment that is the subject of this

work are most easily represented as data points on a number of complex planes: unfortunately,

due to experimental difficulties, absolute phases of the data points and some of the relative

phases were for practical purposes undetermined, so that field value expressions of the nature

of (2.49) could not be used directly for data inversion work on the available data. Instead, an

inversion procedure was constructed that worked with the lengths of vectors connecting

selected pairs of data points in their complex planes,

r,,-IF,-F,I , (2.50)

a choice of parameterization that adequately expresses the available experimental information
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while being unaffected by the phase uncertainty problem. The notation scheme given by equa-

tions (2.44) through (2.48) in combination with the standard Pythagorean formula for distance

between two points straightforwardly gave from field value expressions of the nature of (2.49) a

number of vector length perturbation expressions of the form

'-I, - 110o+ D,, 8a. (2.51)

which could then be used for the inversion work.

A practical difficulty that arose at this point was the fact that there were 24 vectors

whose lengths were subject to fitting, while there were fewer than 10 layers in the conductivity

profile model whose conductivities were subject to perturbation in order to adjust the calculated

vector lengths; a least-squares approach was indicated. The problem was expressed in the form

of the equation system

d, - ' A, 6 0. j , i ton , (2.52)
.i-i

where

d, - w,(i,-jI) (2.53)

and

AI - w, Dii ,(2,54)

N is the number of vector lengths to be fitted, ie is the experimental value for the i th vector

length, i4o and D, are as in equation (2.51), and w, is a weighting factor to determine the

degree of emphasis of each equation in the least-squares procedure. The weighting factors were

chosen to be proportional to the standard deviations of their corresponding vector lengths. the

philosophy being that in the fitting procedure those vector lengths that could stand to have the

greatest liberties taken with them are those that are the most poorly determined in the first

place. In matrix notation we can express the equation system (2.52) as

d-A8- , (2.55)

where d is a column vector of dimension N, 8(y is a column vector of dimension M, and A is

an N X M matrix. The least-squares inversion of (2.55), which is designed to find the Bo- which

minimizes the norm of the difference between the right and left sides of (2.55). employs the

method of singular value decomposition, which factors the matrix A into the form
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A = UQ Vr (2.56)

where U is an N X M matrix such that

UT U=I , (2.57)

Vr is an M X M matrix such that

, r V - V Vr -1 (2.58)

and Q is an M X M matrix all of whose nondiagonal elements are equal to zero. We then have

from (2.55) and (2.56)

a. - V R Ur d (2.59)

where R is the matrix obtained from Q by replacing the nonzero diagonal elements by their

reciprocals. In order to avoid serious injury to the linearity approximation that underlies most

of the work leading up to (2.52), the column vector d is scaled down to such a size that none

of the layers of the conductivity profile model have their conductivities changed by more than

10%, a restriction that was found in practice to be sufficient to avoid divergence of the inver-

sion procedure due to failure of the linearity approximation.

A useful feature of the method of singular value decomposition is that it can be made

insensitive to machine precision error and other sources of computational noise. In a problem

such as is represented by the matrix equation (2.55), there will often be one or more conduc-

tivity perturbation profiles 8o- that, if fed through A, will yield column vectors d of small or

negligible magnitude. In such a case, when the problem is turned around and a data vector d is

input to yield a perturbation profile 8o, noise in the data or, in extreme cases, truncation error

in the machine that processes the data, can result in one or more of these null perturbation

profiles being grossly exaggerated (to a degree roughly proportional to the negligibility of its

associated d vector's magnitude) and superposed on the desired solution profile. this noise

amplification effect can badly obscure the physical content of the problem, and it is often desir-

able to completely filter such null perturbation profiles from the answer. The matrix decomposi-

tion scheme given by equations (2.56) through (2.58) points out the null profiles buried in the

matrix A and makes it easy to eliminate their effects on the solution profile. In this scheme. U

and V are basically coordinate transform matrices, and each of the diagonal elements of the

matrix Q stands for one of a number of mutually orthogonal perturbational profiles- if such an

element is very small relative to the diagonal element of largest magnitude, the profile it

represents will be one of the troublesome profiles. If it is judged that this profile's contribution

to the solution profile obscures more than it enlightens, then its corresponding element in Q

............ !. -,<
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can be set to zero and the trouble profile will be deleted from the basis set of profiles from

which the solution profile is constructed. A discussion of the method and some computer rou-

tines that implement it are given in Wilkinson and Reinsch (1971). Although the need for the

filtering capability of this method never arose in the course of the inversion work, it was reas-

suring to have this capability present in the inversion routines.

~1 ~ --. *.i
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